pytorchautograd包中,利用Jacobian(雅格比)矩阵进行梯度的计算。学习实值标量函数、实值向量函数和实值矩阵函数相对于实向量变元或矩阵变元的偏导

阅读全文 »

小结矩阵求解过程中的基础知识

  • 标量、向量和矩阵
  • 矩阵乘法/积
  • 转置、共扼、共扼转置
  • 矩阵的迹
  • 向量化和矩阵化
阅读全文 »

最近推导神经网络的前向传播和反向传播过程,经常会遇到有关导数、微分和梯度的内容,对它们的概念进行一次小结

  • 导数
  • 微分
  • 偏导数
  • 全微分
  • 方向导数
  • 梯度
阅读全文 »

神经网络是卷积神经网络的基础,其包含的层架构、激活函数、反向传播、正则化等等内容都可以应用于卷积神经网络

阅读全文 »

在机器学习和深度学习中,通常需要把目标函数设置或者假定为凸函数(Convex Function),这样能够满足局部最小值就是全局最小值的特点,方便进行梯度计算

阅读全文 »