1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
| import numpy as np
def iou(box, clusters): """ Calculates the Intersection over Union (IoU) between a box and k clusters. :param box: tuple or array, shifted to the origin (i. e. width and height) :param clusters: numpy array of shape (k, 2) where k is the number of clusters :return: numpy array of shape (k, 0) where k is the number of clusters """ x = np.minimum(clusters[:, 0], box[0]) y = np.minimum(clusters[:, 1], box[1]) if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0: raise ValueError("Box has no area")
intersection = x * y box_area = box[0] * box[1] cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = intersection / (box_area + cluster_area - intersection)
return iou_
def avg_iou(boxes, clusters): """ Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters. :param boxes: numpy array of shape (r, 2), where r is the number of rows :param clusters: numpy array of shape (k, 2) where k is the number of clusters :return: average IoU as a single float """ return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes): """ Translates all the boxes to the origin. :param boxes: numpy array of shape (r, 4) :return: numpy array of shape (r, 2) """ new_boxes = boxes.copy() for row in range(new_boxes.shape[0]): new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0]) new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1]) return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median): """ Calculates k-means clustering with the Intersection over Union (IoU) metric. :param boxes: numpy array of shape (r, 2), where r is the number of rows :param k: number of clusters :param dist: distance function :return: numpy array of shape (k, 2) """ rows = boxes.shape[0]
distances = np.empty((rows, k)) last_clusters = np.zeros((rows,))
np.random.seed()
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True: for row in range(rows): distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all(): break
for cluster in range(k): clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
import glob import xml.etree.ElementTree as ET
import numpy as np
from kmeans import kmeans, avg_iou
ANNOTATIONS_PATH = "Annotations" CLUSTERS = 5
def load_dataset(path): dataset = [] for xml_file in glob.glob("{}/*xml".format(path)): tree = ET.parse(xml_file)
height = int(tree.findtext("./size/height")) width = int(tree.findtext("./size/width"))
for obj in tree.iter("object"): xmin = int(obj.findtext("bndbox/xmin")) / width ymin = int(obj.findtext("bndbox/ymin")) / height xmax = int(obj.findtext("bndbox/xmax")) / width ymax = int(obj.findtext("bndbox/ymax")) / height
dataset.append([xmax - xmin, ymax - ymin])
return np.array(dataset)
data = load_dataset(ANNOTATIONS_PATH) out = kmeans(data, k=CLUSTERS) print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100)) print("Boxes:\n {}".format(out))
ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist() print("Ratios:\n {}".format(sorted(ratios)))
|