1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
""" @date: 2020/3/26 下午2:33 @file: classifier.py @author: zj @description: """
import os import time import copy import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import torchvision.transforms as transforms from torchvision.datasets import ImageFolder import torchvision
import models.alexnet_spp as alexnet_spp import utils.util as util
data_root_dir = '../data/train_val/' model_dir = '../data/models/'
def load_data(root_dir): transform = transforms.Compose([ transforms.Resize((227, 227)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
data_loaders = {} dataset_sizes = {} for phase in ['train', 'val']: phase_dir = os.path.join(root_dir, phase)
data_set = ImageFolder(phase_dir, transform=transform) data_loader = DataLoader(data_set, batch_size=128, shuffle=True, num_workers=8)
data_loaders[phase] = data_loader dataset_sizes[phase] = len(data_set)
return data_loaders, dataset_sizes
def train_model(model, criterion, optimizer, scheduler, dataset_sizes, data_loaders, num_epochs=25, device=None): since = time.time()
best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0
loss_dict = {'train': [], 'val': []} acc_dict = {'train': [], 'val': []} for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10)
for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval()
running_loss = 0.0 running_corrects = 0
for inputs, labels in data_loaders[phase]: inputs = inputs.to(device) labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels)
if phase == 'train': loss.backward() optimizer.step()
running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step()
dataset_size = dataset_sizes[phase]
epoch_loss = running_loss / dataset_size epoch_acc = running_corrects.double() / dataset_size loss_dict[phase].append(epoch_loss) acc_dict[phase].append(epoch_acc)
print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts) return model, loss_dict, acc_dict
if __name__ == '__main__': data_loaders, data_sizes = load_data(data_root_dir) print(data_sizes)
res_loss = dict() res_acc = dict() for name in ['alexnet_spp', 'alexnet']: if name == 'alexnet_spp': model = alexnet_spp.AlexNet_SPP(num_classes=20) else: model = torchvision.models.AlexNet(num_classes=20)
device = util.get_device() model = model.to(device)
criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=1e-3) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.1)
best_model, loss_dict, acc_dict = train_model(model, criterion, optimizer, lr_scheduler, data_sizes, data_loaders, num_epochs=50, device=device)
util.check_dir(model_dir) torch.save(best_model.state_dict(), os.path.join(model_dir, '%s.pth' % name))
res_loss[name] = loss_dict res_acc[name] = acc_dict
print('train %s done' % name) print()
util.save_png('loss', res_loss) util.save_png('acc', res_acc)
|